Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

2-Hydroxypropane-1,3-diammonium bis(phosphonato)zincate(II) hemihydrate

Andrew S. Holtby and William T. A. Harrison*
Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland
Correspondence e-mail: w.harrison@abdn.ac.uk

Received 16 October 2007; accepted 17 October 2007

Key indicators: single-crystal X-ray study; $T=120 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; disorder in main residue; R factor $=0.028 ; w R$ factor $=0.064$; data-to-parameter ratio $=15.7$.

In the title compound, $\left(\mathrm{C}_{3} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}\right)\left[\mathrm{Zn}\left(\mathrm{HPO}_{3}\right)_{2}\right] \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$, the inorganic macroanionic chain is built up from ZnO_{4} tetrahedra and HPO_{3} pseudo-pyramids sharing vertices. The organic dication shows positional disorder of its central -OH group in a 0.614 (7):0.386 (7) ratio. The components interact by way of $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. The Zn atom lies on a crystallographic twofold axis and one C atom, the disordered O atoms of the -OH groups and the water O atom lie on a crystallographic mirror plane.

Related literature

For background, see: Holtby et al. (2007). For other inorganic networks templated by the same cation, see: Chidambaram et al. (1999); Choudhury et al. (2000); Vaidhyanathan \& Natarajan (1999).

$$
\left[\mathrm{Zn}\left(\mathrm{HPO}_{3}\right)_{2}\right]^{2-} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}
$$

Experimental

Crystal data

$\left(\mathrm{C}_{3} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}\right)\left[\mathrm{Zn}\left(\mathrm{HPO}_{3}\right)_{2}\right] \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=326.48$
Orthorhombic, Pbcm
$a=8.8554$ (3) A
$b=7.8466(3) \AA$
$c=16.6251(5) \AA$
$V=1155.19(7) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
$\mu=2.43 \mathrm{~mm}^{-1}$
$T=120$ (2) K
$0.28 \times 0.20 \times 0.10 \mathrm{~mm}$

Data collection

Nonius KappaCCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2003)
$T_{\text {min }}=0.550, T_{\text {max }}=0.793$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.028 \quad 87$ parameters
$w R\left(F^{2}\right)=0.064 \quad \mathrm{H}$-atom parameters constrained
$S=1.12$
1370 reflections
$\Delta \rho_{\text {max }}=0.45 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.38 \mathrm{e}^{-3}$

Table 1
Selected bond lengths (\AA).

$\mathrm{Zn} 1-\mathrm{O} 1^{\mathrm{i}}$	$1.9314(17)$	$\mathrm{P} 1-\mathrm{O} 1$	$1.5197(17)$
$\mathrm{Zn} 1-\mathrm{O} 2$	$1.9501(16)$	$\mathrm{P} 1-\mathrm{O} 2$	$1.5264(17)$
$\mathrm{P} 1-\mathrm{O} 3$	$1.4999(19)$		

Symmetry code: (i) $-x,-y+1,-z$.

Table 2
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 4 A-\mathrm{H} 4 A \cdots \mathrm{O} 3$	0.90	2.17	$3.072(4)$	179
$\mathrm{O} 4 B-\mathrm{H} 4 B \cdots \mathrm{O}^{\mathrm{ii}}$	0.90	1.96	$2.863(5)$	179
$\mathrm{~N} 1-\mathrm{H} 2 \cdots \mathrm{O}^{2 i i}$	0.91	1.92	$2.822(3)$	168
$\mathrm{~N} 1-\mathrm{H} 3 \cdots \mathrm{O}^{\mathrm{i}}$	0.91	1.85	$2.738(3)$	166
$\mathrm{~N} 1-\mathrm{H} 4 \cdots \mathrm{O}^{\mathrm{ii}}$	0.91	1.85	$2.763(3)$	177
$\mathrm{O}^{\mathrm{H}}-\mathrm{H} 5 \cdots \mathrm{O}^{\text {iv }}$	0.91	1.97	$2.801(4)$	150
Symmetry codes: (ii) $-x+1, y-\frac{1}{2}, z ;$ (iii) $-x+1,-y+1,-z ;$ (iv) $x, y,-z+\frac{1}{2}$				

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski \& Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski \& Minor, 1997), and SORTAV (Blessing, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

We thank the EPSRC National Crystallography Service (University of Southampton) for the data collection.

[^0]
References

Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Bruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Chidambaram, D., Neeraj, S., Natarajan, S. \& Rao, C. N. R. (1999). J. Solid State Chem. 147, 154-169.
Choudhury, A., Natarajan, S. \& Rao, C. N. R. (2000). Chem. Eur. J. 6, 11681175.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Holtby, A. S., Harrison, W. T. A., Yilmaz, V. T. \& Büyükgüngör, O. (2007). Solid State Sci. 9, 149-154.
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter, Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Vaidhyanathan, R. \& Natarajan, S. (1999). J. Mater. Chem. 9, 1807-1811.

supplementary materials

2-Hydroxypropane-1,3-diammonium bis(phosphonato)zincate(II) hemihydrate

A. S. Holtby and W. T. A. Harrison

Comment

The title compound, $\mathrm{C}_{3} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O} \cdot \mathrm{Zn}\left(\mathrm{HPO}_{3}\right)_{2} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$, (I), (Fig. 1) complements the growing family of templated zincophosphite networks (e.g. Holtby et al., 2007).

The connectivity of the polyhedra in the inorganic zincophosphite component of (I) results in macroanionic chains of 4-rings propagating in [010]. The constituent ZnO_{4} and HPO_{3} units have normal geometrical paramters (Table 1), with the Zn atom lying on a crystallographic 2-fold axis. Each Zn atom therefore serves as a node for the chain with O 1 and O 2 serving as the linking atoms whereas $\mathrm{P} 1-\mathrm{O} 3$ is a terminal bond.

The complete $\left[\mathrm{H}_{3} \mathrm{NCH}_{2} \mathrm{CHOHCH}_{2} \mathrm{NH}_{3}\right]^{2+}$ dication in (I) is generated by mirror symmetry, with C 2 lying on the reflecting plane. The pendant -OH group attached to C 2 is disordered over two positions, with both O atoms also occupying the reflection plane. A water molecule (site symmetry m) with a fractional site occupancy of 0.5 completes the structure of (I).

The unit-cell packing for (I) (Fig. 2) results in the [010] chains of stoichiometry $\left[\mathrm{Zn}\left(\mathrm{HPO}_{3}\right)_{2}\right]^{2-}$ being crosslinked by the water molecule in the [001] direction, with linking $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2) as the key structural feature. The organic cation occupies the space between the pseudo (100) layes and further consolidates the structure through $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and also $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

The $\left[\mathrm{H}_{3} \mathrm{NCH}_{2} \mathrm{CHOHCH}_{2} \mathrm{NH}_{3}\right]^{2+}$ cation has been used to template other inorganic networks including zinc phosphates (Chidambaram et al., 1999), tin phosphates (Vaidhyanathan \& Natarajan, 1999) and iron oxalato-phosphates (Choudhury et al., 2000). It is notable that in most of these phases, the -OH group of the template shows similar positional disorder to that observed here.

Experimental

Zinc oxide, phosphorus acid and 1,3-diamino-2-propanol were mixed in a 1:2:1:500 molar ratio with $20 \mathrm{ml}_{\mathrm{H}_{2} \mathrm{O} \text { and shaken. }}^{\text {2 }}$ The mixture was placed in a sealted plastic bottle and heated to 353 K for 2 days. Upon cooling and filtration, colourless blocks of (I) were recovered.

Refinement

The water O 5 atom yielded an unreasonably large $U_{\text {iso }}$ value when full fractional occupancy was assumed. Refining the occupancy for O 5 led to a value near $1 / 2$, which was fixed for the final cycles of refinement. Reducing the occupancy for O5 also lowered the R factors and led to a more plausible $U_{\text {iso }}$ value, before anisotropic refinement was finally carrued out. The - OH group of the dication is disordered over two positions in a 0.614 (7):0.386 (7) ratio (sum constrained to unity).

supplementary materials

Upon anisotropic refinement, $\mathrm{O} 4 \mathrm{a}, \mathrm{O} 4 \mathrm{~b}$ and O 5 showed elongated displacement ellipsoids. Attempts to model this situation with split-atom sites or in lower symmetry space groups were not successful. On account of the resulting short $\mathrm{H} 4 \cdots \mathrm{H} 4 \mathrm{~B}$ distance of $1.86 \AA$, the positions of the H atoms of the -OH groups should be regarded as less certain. However, it is notable that both H 4 and H 4 b are involved in hydrogen bonds to the same acceptor atom.

The water H atom was located in a difference map and refined as riding in its as-found relative position with $U_{\text {iso }}(\mathrm{H})$ $=1.2 U_{\text {eq }}(\mathrm{O})$. The other H atoms were placed in calculated positions $(\mathrm{C}-\mathrm{H}=0.99 \AA, \mathrm{~N}-\mathrm{H}=0.91 \AA, \mathrm{O}-\mathrm{H}=0.90 \AA)$ and refined as riding with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\mathrm{eq}}$ (carrier). The $-\mathrm{NH}_{3}$ group was allowed to rotate, but not to tip, to best fit the electron density.

Figures

Fig. 1. View of the asymmetric unit of (I) expanded to show the complete organic dication and the Zn coordination sphere. Displacement ellipsoids are drawn at the 50% probability level and hydrogen atoms are drawn as spheres of arbitrary radius. Hydrogen bonds are shown as double dashed lines. Symmetry codes: (i) $-x, 1-y,-z$; (ii) $-x, y-1 / 2, z$; (iii) $x, 1 / 2$ $-y,-z$; (iv) $x, y, 1 / 2-z$. Only one disorder component of the organic species is shown.

Fig. 2. Unit-cell packing for (I) viewed down [010]. ZnO_{4} tetrahedra sand, HPO_{3} tetrahedra green, C grey, H white, N blue, O red. The hydrogen bonds are shaded yellow.

2-Hydroxypropane-1,3-diammonium bis(phosphonato)zincate(II) hemihydrate

Crystal data

$\left(\mathrm{C}_{3} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}\right)\left[\mathrm{Zn}\left(\mathrm{HPO}_{3}\right)_{2}\right] \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$
$F_{000}=668$
$M_{r}=326.48$
Orthorhombic, Pbcm
Hall symbol: -P 2c 2b
$a=8.8554$ (3) \AA
$b=7.8466$ (3) \AA
$c=16.6251$ (5) \AA
$V=1155.19$ (7) \AA^{3}
$Z=4$

Data collection

Nonius KappaCCD

diffractometer

Radiation source: fine-focus sealed tube
Monochromator: graphite
$D_{\mathrm{x}}=1.877 \mathrm{Mg} \mathrm{m}^{-3}$
Mo Ka radiation
$\lambda=0.71073 \AA$
Cell parameters from 1544 reflections
$\theta=2.9-27.5^{\circ}$
$\mu=2.43 \mathrm{~mm}^{-1}$
$T=120(2) \mathrm{K}$
Block, colourless
$0.28 \times 0.20 \times 0.10 \mathrm{~mm}$

1370 independent reflections
1271 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.031$
$T=120(2) \mathrm{K}$
ω and φ scans
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
$T_{\text {min }}=0.550, T_{\text {max }}=0.793$
10217 measured reflections

$$
\begin{aligned}
& \theta_{\max }=27.5^{\circ} \\
& \theta_{\min }=3.5^{\circ} \\
& h=-9 \rightarrow 11 \\
& k=-10 \rightarrow 8 \\
& l=-21 \rightarrow 19
\end{aligned}
$$

Hydrogen site location: difmap and geom
H -atom parameters constrained

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0046 P)^{2}+2.8213 P\right]
$$

where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.002$
$\Delta \rho_{\max }=0.45 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.38$ e \AA^{-3}
Extinction correction: SHELXL97 (Sheldrick, 1997), $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$

Extinction coefficient: 0.0029 (6) methods
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F , with F set to zero for negative F^{2}. The threshold expression of $\mathrm{F}^{2}>2 \operatorname{sigma}\left(\mathrm{~F}^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(A^{2}\right)$

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$	Occ. (<1)
Zn1	$0.04498(4)$	0.2500	0.0000	$0.01367(13)$	
P1	$0.19574(7)$	$0.55780(8)$	$0.09909(4)$	$0.01743(16)$	
H1	0.1771	0.4733	0.1670	0.021^{*}	
O1	$0.06921(19)$	$0.6883(2)$	$0.09460(10)$	$0.0226(4)$	
O2	$0.18811(18)$	$0.4268(2)$	$0.03132(10)$	$0.0207(4)$	
O3	$0.3492(2)$	$0.6382(3)$	$0.10293(17)$	$0.0458(7)$	
C1	$0.6993(3)$	$0.5624(3)$	$0.17508(14)$	$0.0230(5)$	
H1A	0.6814	0.6869	0.1765	0.028^{*}	
H1B	0.8097	0.5431	0.1735	0.028^{*}	
C2	$0.6344(4)$	$0.4814(6)$	0.2500	$0.0280(9)$	
H2A	0.5234	0.4971	0.2500	0.034^{*}	$0.614(7)$

				0.034^{*}	$0.386(7)$
H2B	0.6565	0.3578	0.2500	$0.0288(14)$	$0.614(7)$
O4A	$0.4821(4)$	$0.4546(7)$	0.2500	0.035^{*}	$0.307(4)$
H4A	0.4429	0.5079	0.2067	$0.071(5)$	$0.386(7)$
O4B	$0.6225(16)$	$0.3254(10)$	0.2500	0.085^{*}	$0.193(4)$
H4B	0.6301	0.2665	0.2038	$0.0197(4)$	
N1	$0.6289(2)$	$0.4895(3)$	$0.10193(12)$	0.024^{*}	
H2	0.6785	0.5282	0.0576	0.024^{*}	
H3	0.5303	0.5217	0.0995	0.024^{*}	
H4	0.6348	0.3738	0.1038	$0.063(3)$	0.50
O5	$0.0333(10)$	$0.8202(10)$	0.2500	0.075^{*}	0.50

Atomic displacement parameters $\left(\lambda^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn 1	$0.01189(19)$	$0.0156(2)$	$0.0135(2)$	0.000	0.000	$-0.00179(14)$
P 1	$0.0180(3)$	$0.0157(3)$	$0.0186(3)$	$-0.0003(2)$	$-0.0065(2)$	$-0.0010(2)$
O1	$0.0190(8)$	$0.0317(10)$	$0.0170(8)$	$0.0083(7)$	$-0.0034(7)$	$-0.0029(7)$
O2	$0.0190(8)$	$0.0211(9)$	$0.0219(8)$	$-0.0053(7)$	$0.0026(7)$	$-0.0059(7)$
O3	$0.0162(9)$	$0.0245(11)$	$0.097(2)$	$0.0013(8)$	$-0.0156(11)$	$-0.0235(12)$
C1	$0.0217(12)$	$0.0284(13)$	$0.0189(12)$	$-0.0072(10)$	$-0.0013(10)$	$-0.0016(10)$
C2	$0.0234(18)$	$0.043(2)$	$0.0173(16)$	$-0.0162(17)$	0.000	0.000
O4A	$0.012(2)$	$0.059(3)$	$0.0146(19)$	$-0.0111(19)$	0.000	0.000
O4B	$0.174(13)$	$0.016(4)$	$0.022(4)$	$-0.029(6)$	0.000	0.000
N1	$0.0168(10)$	$0.0230(11)$	$0.0195(10)$	$-0.0010(8)$	$0.0024(8)$	$-0.0028(8)$
O5	$0.113(7)$	$0.062(5)$	$0.013(3)$	$-0.052(5)$	0.000	0.000

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{Zn} 1-\mathrm{O} 1^{\mathrm{i}}$	1.9314 (17)
$\mathrm{Zn} 1-\mathrm{O} 1^{\text {ii }}$	1.9314 (17)
Zn1-O2	1.9501 (16)
$\mathrm{Zn} 1-\mathrm{O} 2^{\text {iii }}$	1.9501 (16)
P1-O3	1.4999 (19)
P1-O1	1.5197 (17)
P1-O2	1.5264 (17)
P1-H1	1.3200
$\mathrm{O} 1-\mathrm{Zn} 1{ }^{\text {i }}$	1.9314 (17)
C1-N1	1.481 (3)
C1-C2	1.512 (3)
C1-H1A	0.9900
C1-H1B	0.9900
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Zn} 1-\mathrm{O} 1^{\text {ii }}$	116.86 (10)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Zn} 1-\mathrm{O} 2$	112.29 (8)
$\mathrm{O} 1^{\mathrm{ii}}-\mathrm{Zn} 1-\mathrm{O} 2$	107.53 (7)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Zn} 1-\mathrm{O} 2^{\text {iii }}$	107.53 (7)
$\mathrm{O} 1^{\text {ii }}-\mathrm{Zn} 1-\mathrm{O} 2{ }^{\text {iii }}$	112.29 (8)

$\mathrm{C} 2-\mathrm{O} 4 \mathrm{~B}$	$1.229(9)$
$\mathrm{C} 2-\mathrm{O} 4 \mathrm{~A}$	$1.365(5)$
$\mathrm{C} 2-\mathrm{C} 1^{\text {iv }}$	$1.512(3)$
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9900
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	0.9900
$\mathrm{O} 4 \mathrm{~A}-\mathrm{H} 2 \mathrm{~A}$	0.4951
O4A-H4A	0.9023
O4B-H2B	0.3939
$\mathrm{O} 4 \mathrm{~B}-\mathrm{H} 4 \mathrm{~B}$	0.8991
$\mathrm{~N} 1-\mathrm{H} 2$	0.9100
$\mathrm{~N} 1-\mathrm{H} 3$	0.9100
$\mathrm{~N} 1-\mathrm{H} 4$	0.9100
$\mathrm{O} 5-\mathrm{H} 5$	0.9142
$\mathrm{O} 4 \mathrm{~A}-\mathrm{C} 2-\mathrm{C} 1^{\text {iv }}$	$116.1(2)$
O4B-C2-C1	$116.8(3)$
O4A-C2-C1	$116.1(2)$
C1 ${ }^{\text {iv }}-\mathrm{C} 2-\mathrm{C} 1$	$110.9(3)$
O4B-C2-H2A	92.2

sup-4

supplementary materials

$\mathrm{O} 2-\mathrm{Zn} 1-\mathrm{O} 2^{\text {iii }}$	98.92 (10)	$\mathrm{C} 1{ }^{\text {iv }}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	109.0
$\mathrm{O} 3-\mathrm{P} 1-\mathrm{O} 1$	112.76 (11)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	109.0
$\mathrm{O} 3-\mathrm{P} 1-\mathrm{O} 2$	110.78 (12)	$\mathrm{O} 4 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	92.5
$\mathrm{O} 1-\mathrm{P} 1-\mathrm{O} 2$	112.62 (10)	$\mathrm{C} 1^{\text {iv }}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.7
O3-P1-H1	106.7	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.7
$\mathrm{O} 1-\mathrm{P} 1-\mathrm{H} 1$	106.7	H2A-C2-H2B	108.5
$\mathrm{O} 2-\mathrm{P} 1-\mathrm{H} 1$	106.7	$\mathrm{C} 2-\mathrm{O} 4 \mathrm{~A}-\mathrm{H} 4 \mathrm{~A}$	108.0
$\mathrm{P} 1-\mathrm{O} 1-\mathrm{Zn} 1^{\text {i }}$	126.51 (10)	H2A-O4A-H4A	88.4
P1-O2-Zn1	134.82 (10)	C2-O4B-H4B	120.4
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	110.7 (2)	$\mathrm{H} 2 \mathrm{~B}-\mathrm{O} 4 \mathrm{~B}-\mathrm{H} 4 \mathrm{~B}$	105.9
N1-C1-H1A	109.5	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 2$	109.5
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	109.5	C1-N1-H3	109.5
N1-C1-H1B	109.5	$\mathrm{H} 2-\mathrm{N} 1-\mathrm{H} 3$	109.5
C2-C1-H1B	109.5	C1-N1-H4	109.5
H1A-C1-H1B	108.1	H2-N1-H4	109.5
$\mathrm{O} 4 \mathrm{~B}-\mathrm{C} 2-\mathrm{O} 4 \mathrm{~A}$	76.2 (7)	H3-N1-H4	109.5
$\mathrm{O} 4 \mathrm{~B}-\mathrm{C} 2-\mathrm{C} 1^{\text {iv }}$	116.8 (3)		
$\mathrm{O} 3-\mathrm{P} 1-\mathrm{O} 1-\mathrm{Zn} 1^{\text {i }}$	103.54 (17)	$\mathrm{O} 1{ }^{\mathrm{ii}}-\mathrm{Zn} 1-\mathrm{O} 2-\mathrm{P} 1$	-23.26 (18)
$\mathrm{O} 2-\mathrm{P} 1-\mathrm{O} 1-\mathrm{Zn} 1^{\text {i }}$	-22.74 (17)	$\mathrm{O} 2{ }^{\text {iii }}-\mathrm{Zn} 1-\mathrm{O} 2-\mathrm{P} 1$	-140.15 (19)
$\mathrm{O} 3-\mathrm{P} 1-\mathrm{O} 2-\mathrm{Zn} 1$	168.39 (15)	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 4 \mathrm{~B}$	45.9 (8)
$\mathrm{O} 1-\mathrm{P} 1-\mathrm{O} 2-\mathrm{Zn} 1$	-64.28 (18)	N1-C1-C2-O4A	-41.3 (5)
$\mathrm{O} 1-\mathrm{Zn} 1-\mathrm{O} 2-\mathrm{P} 1$	106.65 (16)	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 1^{\text {iv }}$	-176.8 (2)

Symmetry codes: (i) $-x,-y+1,-z$; (ii) $-x, y-1 / 2, z$; (iii) $x,-y+1 / 2,-z$; (iv) $x, y,-z+1 / 2$.

Hydrogen-bond geometry (${ }^{(},{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 4 \mathrm{~A}-\mathrm{H} 4 \mathrm{~A} \cdots \mathrm{O} 3$	0.90	2.17	$3.072(4)$	179
$\mathrm{O} 4 \mathrm{~B}-\mathrm{H} 4 \mathrm{~B} \cdots \mathrm{O}^{\mathrm{v}}$	0.90	1.96	$2.863(5)$	179
$\mathrm{~N} 1 — \mathrm{H} 2 \cdots \mathrm{O} 2^{\mathrm{vi}}$	0.91	1.92	$2.822(3)$	168
$\mathrm{~N} 1 — \mathrm{H} 3 \cdots \mathrm{O} 3$	0.91	1.85	$2.738(3)$	166
$\mathrm{~N} 1 — \mathrm{H} 4 \cdots \mathrm{O}^{\mathrm{v}}$	0.91	1.85	$2.763(3)$	177
$\mathrm{O}^{\mathrm{V}}-\mathrm{H} 5 \cdots \mathrm{O}^{\text {iv }}$	0.91	1.97	$2.801(4)$	150

Symmetry codes: (v) $-x+1, y-1 / 2, z$; (vi) $-x+1,-y+1,-z$; (iv) $x, y,-z+1 / 2$.

supplementary materials

Fig. 1

Fig. 2

[^0]: Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2549).

